
AD-A266 689

Xab: A Tool for Monitoring PVM Programs

Adam L. Beguelin
June 2, 1993

CM U-CS-93-164DTIC_
ELECTE

JL14 1993 I l

S ~ A J1School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

This paper also appears in the proceedings of the April 1993 Workshop
on Heterogeneous Processing, IEEE Computer Society Press.

Tair d;Lflment La been approved

for public !ele'=3s and salqg its

distribution is unhimit,4

This work began while the author held a joint appointment at the U'niversity of Tennessee
and Oak Ridge National Laboratory. The author -urrently holds a joint appointment at the
CMU School of Computer Science and the Pittsburgh Siipercomputing Center.

! .30 '. t93-15896
3 0flfl

* ~NOTICE

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE COPY

FURNISHED TO DTIC CONTAINED

A SIGNIFICANT NUMBER OF

PAGES WHICH DO NOT

REPRODUCE LEGIBLY.

Keywords: Monitoring, parallel programming, debugging, real time.

Abstract

Xab (X-window Analysis and deBugging) is a tool for run time monitoring of
PVM (Parallel Virtual Machine) programs. PVM supports the programming
of a network of heterogeneous compu~ers as a single parallel computer. Using
Xab, PVM programs can easily be instrumented and monitored. Xab uses
PVM to monitor PVM programs. This makes Xab very portable but it leads
to interesting issues of how to make Xab peacefully coincide with the programs
it monitors.
Xab consists of three main components, a user library, a monitoring program,
and an X windows front end. The user library provides instrumented versions
of the PVM calls. The monitoring program runs as a PVM process and gathers
monitor events in the form of PVM messages. The Xab front end displays
information graphically about PVM processes and messages.
This paper discusses the design, implementation. and use of the Xab tool. Re-
lated work is briefly presented and contrasted with the approach taken with
Xab. How Xab works and how it is used are discussed in detail. Finally. the
current status of Xab is presented along with future directions of where the
research may go from here.

Accesion For

NTIS CRA&I S

--- ' ,_ iD .U.na o.... -..1 ..

By5b
Di~1

A'ai~dbilhty Codes

AvdiD andIor
DiAt Special

1 Introduction

The PVM message passing system [21 for heterogeneous networks of computers
has become quite popular. PVM is being used by scientists and educators in
the US and abroad. Several of the US supercomputer centers provide PVM as a
programming infrastructure for scientists who wish to spread their computation
over machines available at the centers. Educators at several universities use
PVM as a teaching tool in parallel programming courses. While PVM provides
a solid programming base, it does not provide the user with many tools for
analyzing or debugging PVM programs. Xab aids the user in the development
of PVM prurams. Xab is a run timc monitoring tool for PV.M programs. Xab
gives the user direct feedback as to what PVM functions his or her program
is performing. In its simplest form, this feedback is displayed in a window as
shown in Figure 1.

The approach of real time monitoring is particularly apropos in a hetero-
geneous multiprogramming environment. Differences in computation and com-
munication speeds here are due both to heterogeneity and external CPU and
network loads. Monitoring can help give the user insight into how a program is
behaving in such an environment.

Xab is a continuing research project. This paper discusses several related
research projects, the current version of Xab, and the future development of the
Xab tool.

2 Related Work

There are many other research projects that provide event display tools for
parallel and distributed computing. SHMAP [4] displays shared memory access
patterns for parallel Fortran programs. The HeNCE system [1] provides trace
feedback specifically tailored to its programming paradigm. ParaGraph [6] and
BEE [3] are two projects that are similar to Xab.

ParaGraph is an X based tool for the display of events generated by parallel
programs. ParaGraph provides a rich set of views for displaying events. PICL
(portable instrumented communication library) [5] trace files are used as input
to ParaGraph. These trace files are typically generated by a message passing
parallel program written using PICL. However, the trace file may be generated
by other tools. For instance, Xab provides a translator from Xab trace files to
PICL format, allowing ParaGraph to he used with the output of Xab. Currently
ParaGraph does not support the real time display of events. In [6], Heath and
Etheridge discuss some of the issues involved in adding real time event. display
to ParaGraph.

BEE [3] also supports the display ot events generated by parallel programs.
Like Xab, BEE can display events as the program is executing. BEE events can
be user defined and are generated by user instrumentation of a program. BEE

-- m • • m m m ml| mI

Sxab fl ý I mim
[i] FIIIIII HEI]][

F0D00:-00:02:492186

(cholhost-, 0): bett.y (null): rcv, Tgpe 16003

(cholnode, 1): thud (null): getnfloat, Serial 2, Count. 9, Rc 0

(cholnode, 0): wi1na (null): rcv.done

(cholnode, 2): betty (nuUl): putlnfloat, Serial 3, Count. 8, Rc 0

Figure 1: Xab being used to monitor the PVM Cholesky denio.

monitoring is dynamic and multiple event interpreters are supported. BEE also
supports the monitoring of heterogeneous programs and heterogeneous collec-
tions of machines. Unlike Xab. BEE does not, currently support th,. automatic
instrumentation of programs. However, the facilities provided by BEE are more
general than those of Xab. Xab is specifically focused on monitoring PV\M
programs.

3 How Xab Works

Xab monitors a PVM program by instrumenting calls to the PVM library. Tlhe
instrumented calls generate events that can be displayed during program exe-
cution. The PVM calls are instrumented by replacing them with calls to the,
equivalent Xab library routines. This replacement procedure is performed dif-
ferently in Fortran and C.

3.1 Instrumentation

A Fortran program normally accesses the PVM user routines via the f2c library
that, comes with PVM. With Xab, the f2x library replaces the f2c library. This
allows Fortran programs to use Xab simply by linking to libf2x in place of libf2c.

With C, the procedure is slightly more complicated. The prograninwr must add

2

the include file xab.h to source files that call PVM routines and then recompile

these routines. This include file contains macros that replace the normal PVM

routines with calls to the Xab library. Both Fortran and C programs must be

linked with the Xab library, called libab.

3.2 Event messages

The Xab routines perform the normal PVM functions for the user but they also
send PVM messages to a special monitoring process, called abmon. Covertly
sending PVM messages is tricky business. Care must be taken not to disrupt any

PVM messages the user's program may be manipulating. The current version
of PVM (2.4.1 at the time of this writing) supports a single active message

buffer. In other words, a PVM message is built by constructing a buffer and
then sending it off to one or more locations. A typical sequence of commands
is:

initsendo;
putnint(ki, 1);
putnfloat(Vf, 1);
snd("compnode", 1, 63);
snd("comppart", 4, 63);

Here the message buffer is initialized via initsend). An integer and a float are

placed into the buffer. Finally this buffer is sent to two different PVM processes.
(Processes in PVM are addressed by a name and an integer process identifier.)
When the program is instrumented, each of these lines of code generates a

message to the Xab monitoring process. The Xab message is itself a PVM

message. Precautions must be taken so the Xab message does not destroy the
user's message. If, in the example above, the Xab instrumented putnfloat ()
function was to simply call initsend() to build a message and send it to the
monitor, it would destroy the user's partially built message buffer. Therefore
Xab messages must be hidden. To hide its messages, Xab takes the liberty
of altering internal PVM data structures in a very limittd way. Before Xab
sends one of its event messages, it stores PVM's internal pointers to the user's

message and reinitializes these pointers so the Xab message can be built. After
the Xab message is sent, the original internal PVM pointers are restored, thus

reinstating the user's message buffer. Since Xab only sends covert messages and
never receives them, PVM's internal data structures for received messages do

not need to be altered.
At first it may seem strange to use PVM to monitor PVM programs. There

are several reasons why this makes sense. PVM is a very portable package and
by using PVM as the infrastructure for Xab, Xab can work wherever PVM
works. Using another medium such as sockets and TCP/IP would involve rein-
venting some of PVM's functionality. The least attractive part of using PVM for

Xab is the altering of data structures internal to PVM. Future versions of PVM

3

will provide multiple message buffers. Once this facility is available, the Xab
implementation should no longer need to intrusively alter internal PVM data
structures. Another alternative is to send messages back to the monitor only
when doing so is guaranteed not to destroy a user's message buffer. In PVM
there is only one distinct time when Xab could initialize the user's message buffer
without damaging any user data. At initsendo) time the user is destroying
the current message buffer so Xab could do so as well. To further complicate
matters, it is possible that a user program builds a buffer before enrolling in
the virtual machine. If this is the case, then Xab cannot send messages back
to the monitor process until the user program finally calls initsendo, after
enrolling in the virtual machine. Another consequence of only sending events
at initsend() time is that any events after the last initsend() in a program
would never make it back to the monitor process. Finally, periodically send-
ing back messages to the monitor is problematic. Section 3.4 discusses these
tradeoffs in more detail.

The content of the Xab event messages generally include an event type. a
time stamp, and event specific information. The event type indicates which
PVM call is being invoked. In some cases a PVM call may generate two events.
For instance, the PVM barrier function generates an event before and after the
barrier call. This allows the user to see when barriers are initiated as well as
completed. The time stamp in the event message is the time of day on the
machine where the PVM call is being executed. It is possible that the clocks on
various machines involved in a computation will not be synchronized. Xab does
not rely on the clocks being synchronized; events are simply displayed as they
arrive. However, future versions of Xab may make use of the time stamps. For
instance, it may be informative to know how long processes wait at a particular
barrier in a program. Xab could use the time stamps from barrier events to
display this information. The event specific information in an Xab message
varies for different PVM routines. For the event generated at the start of a
barrier, it is the name of the barrier and the number of processes that must
reach the barrier before continuing. Other event messages contain similar event
specific information.

Besides the event messages, Xab also inserts one additional piece of informa-
tion into user messages. Each message sent by the user program is given a serial
number. The message serial numbers are not unique until combined with the
process identifier. For instance, the first message sent from the PVM process
<comp,o> will be serial number 0, as will be the first message sent from pro-
cesses <comp,4>. This serial number is prepended to the user's message buffer
at initsend() time and stripped from the buffer at receive time. The addition
of this single integer to user messages facilitates analysis of messages.

4

3.3 The monitoring processes

The abmon process receives event messages from the instrumented PVM calls
and formats them into human readable form. The abmon program must be
running before the user's program starts since it needs to receive event messages
from the instrumented calls. The formatted event messages can either be written
to a file or sent to the Xab display program. Just as an astronomer on Earth
observes events that have traveled various distances, the abmon process observes
events relative to its position in the virtual machine. When abmon formats
events it also adds its own perspective within the virtual machine by placing
local time stamps into the event record. The additional time stamps may be
used to discern abmon's perspective by indicating how long it takes events to
propagate from a user process to the monitor process.

The display process will take events as formatted by abmon and display them
in a window as shown in Figure 1. Xab supports two modes of event playback,
continuous play or single step. When the play button is pressed the events
will be displayed in real time. The slider controls the speed of the playback in
continuous playback mode. Playback may be stopped at any time by pressing
the stop button. The single step button will show only the next event in the
monitor's event queue.

The following command line executes Xab, displaying the events in real time
and saving them in a file for later review:

% abmon I tee evfile I xab

The abmon program reads event messages and writes them to standard out. The
unix command tee copies the events to the file evf ile and also passes them to
xab via the pipe. The xab program actually opens a window and displays the
events.

3.4 Timeliness versus message traffic

The method described previously for sending Xab monitor messages is utilized
for every user call to the PVM library. This approach generates what, may
be considered an inordinately large number of messages. There is a tradeoff
between the number of messages and the timeliness of the event display. If
events are buffered and sent to the monitor after every n events then the event
display becomes more asynchronous as n grows. In fact, when n reaches the
number of events in the program, the real time monitor becomes a postmortem
processor. As the display lags behind the program state, some problems in
program behavior cannot be detected. The example in Section 3.5 illustrates
this point. Another factor one must consider is the amount of memory required
to store events before sending them to the monitor. With Xab, events are
immediately dispatched to the monitor. As a result, Xab adds little, in terms
of memory requirements, to the PVM processes being monitored.

5.

Sxab Ir

I® 00:00:36:130320

(cholhost, 0): HALCYON (null): rcv, Tgpe 16040

1E (cholnode, 0): carignan (null): =nd. Tgpe 16004, Serial 0, Count 1

1-4 (cholnode, 2): BURGUNDY (null): and, Tgpe 16004, Serial 0, Count 1

IN* (cholnode, 1): HALCYON (null): snd, Type 16004, Serial 0, Count 16

1-* (cholnode, 3): CONCORD (null): snd, Tgpe 16004, Serial 0, Count 16

IN (cholnode, 4): N2 (null): snd, Type 16004, Serial 0, Count 16. Rc

In (cholnode, 5): bual (null): snd, Type 16004, Serial 0, Count 16, Rw

1= (cholnode, 6): tokay (null): and, Type 16004, Serial 0, Count 16.

IN (cholnode, 7): pinot (null): snd, Tgpe 16004, Serial 0, Count 16.

10 (cholnode, B): 8emay (null): snd, Tgpe 16004, Serial 0, Count 16,

I- (cholnode, 9): chenin (null): and, Tgpe 16004. Serial 0, Count 16,

Figure 2: Xab showing a failed version of the Cholesky demo.

3.5 An Example

One of the demos that comes with PVM is a distributed Cholesky decomposi-
tion prc;ram. Th. window in F;--. 1 is the Xah display in pr•,ere,,s for this
program. The host process. (cholhost, 0) is blocked on a receive. Process
(cholnode, 0) has just received a message. The node process (cholnode, 1)
is extracting data from a message buffer while (cholnode, 2) is placing eight
floats into a message buffer.

One of the advantages of the real time display of Xab is its ability ho show
events immediately as they happen. Ior instance. Figure) showq the sane

C(holesky demo. but this time an error has been deliberately introduced. The
host is waiting on a message of type 16040 while all the cholnode processes are
sending messages of type 16004. thus the program has blocked indefinately. This

example illustrates the advantage of real time monitoring. Postmortem moni-
toring would not work in this situation since the program would not complete
and therefore, would never flush the events for display.

61

4 Status and Future work

Xab is still in its early stages of development, and there are many issues that
can be explored. Currently, the Xab display is very restricted. In the future

Xab should support more interesting displays, ala ParaGraph. More analysis
could also be done on the events that Xab collects. For instance, it is important.
that PVM programs extract data from a message buffer in the same order in

which it it is inserted. Xab could alert the programmer when data insertion

and extraction operations do not match. The bandwidth realized by a program
could be calculated and displayed. If a standard CPU load metric could be

devised, it could be piggy backed on the Xab events and machine load could
be integrated into the Xab display. Since PVM works with multiprogrammed
systems, program behavior may change drastically from run to run. Xab could

help analyze multiple program executions by collecting events over several runs
and supporting aggregate views of these events. For instance, run times for

particular processes could be displayed per architecture. This kind of view
would be useful when tuning an application for a heterogeneous ,,nvironment.

Scalability also becomes an issue as the number of processes and processors
grow. Scalability needs to be addressed in terms of visually displaying larg,,

amounts of information and in terms of collecting this information. Patalel
gather algorithms could possibly be used for collecting events. Finally. the
actual amount of overhead involved in Xab monitoring needs to be carefully
assessed.

4.1 Availability

Currently the Xab software is available on netlib. It can be obtained by seu'vlit:ng
email to netlib'&ornl.gov with the message send inder from pr'n/xah.

5 Acknowledgements

Al Geist and Jack Dongarra provided insight early in the development that
helped set the direction of the Xab research. Discussions with Bob Manchek

and Roldan Pozo on tediously subtle issues of message passing syv.tenl. prove
insightful. Peter Stephan's proof reading improved the graanmatical and senian-
tic content of this article. Wilson Swee attacked the beta version and cleaned it

up for the rest of the world. Finally. I would like to thank ti.c beta t,,st',rs for

their enthusiasm and patience.

References

[1] A. Beguelin, J.1 J. Dongarra. G. A. Geist. R. Manchek, and V. S. Sunderam.

Graphical development tools for network-based concurrent supercomptiting.

In Proceedings of Supe-, u,,ipulzng 91. pages 435-4-14. Albuquerque. 199)1.

[2] A. Beguelin. J. J. Dongarra. G. A. Geist. R. Manchek. and V. S. Sun-
d,-ram. A uFcrs' guide to PV.M parallel virtual machine. Technical Report
ORNI/T..-11826, Oak Ridge National Laboratory. Jiilv 1991.

[3] Bernd Bruegge. A portable platform for distributed event environments.
AC.M SIGPLAN .Votices. 26(12):184-19)3. December 1991. Proceedings of
the ACMi/ONR Workshop on Parallel and Distributed Dehi.gine.

[4] J. Dongarra. 0. Brewer. J. Kohl. and S. Fineherg. A tool to aid in tfli,
design. implementation and understanding of matrix algorithms for parallel
processors. .iournal of Parallel and Distnbuted ('omputing. 9(6(1:185 202.
.June 1990.

[5] G. A. Geist. M. T. Heath. B. WV. Peyton. and P. 11. Worley. A machine-
independent communication library. In J. (Gustafson. editor. The Proi-fdmng;
of the Fourth ('onference on llyperrubes. (oncurrn I (Compulers. and .Ap-
phcations. pages 565-568. P.O. Box 128. Los Altos. ('A. 1990. (;olden (late
Enterprises.

[6] M. Heath and J. Etheridge. Visualizing the performance of parallel pro-
grams. [EEE Software. 8(5):29-39. September 1991.

